Robotics News Hubb
Advertisement Banner
  • Home
  • Robotics News
  • Industrial Automation
  • Contact
No Result
View All Result
  • Home
  • Robotics News
  • Industrial Automation
  • Contact
No Result
View All Result
Gourmet News Hubb
No Result
View All Result
Home Robotics News

How drones could determine the direction of gravity without accelerometers

admin by admin
October 21, 2022
in Robotics News


Flapping-wing robot controlling its attitude using this new principle. It is equipped with an artificial compound eye inspired by insects, which can perceive optical flow at a high frequency. Credit: Christophe De Wagter/TU Delft

For proper operation, drones usually use accelerometers to determine the direction of gravity. In a new study published in Nature on October 19, 2022, a team of scientists from Delft University of Technology, the CNRS and Aix-Marseille University has shown that drones can estimate the direction of gravity by combining visual detection of movement with a model of how they move. These results may explain how flying insects determine the direction of gravity and are a major step toward the creation of tiny autonomous drones.

While drones typically use accelerometers to estimate the direction of gravity, the way flying insects achieve this has been shrouded in mystery until now, as they have no specific sense of acceleration. In this study, a European team of scientists led by the Delft University of Technology in the Netherlands and involving a CNRS researcher has shown that drones can assess gravity using visual motion detection and motion modeling together.

To develop this new principle, scientists have investigated optical flow, that is, how an individual perceives movement relative to their environment. It is the visual movement that sweeps across our retina when we move. For example, when we are on a train, trees next to the tracks pass by faster than distant mountains. The optical flow alone is not enough for an insect to be able to know the direction of gravity.

However, the research team discovered that it was possible for them to find this direction by combining this optical flow with a modeling of their movement, i.e., a prediction of how they will move. The conclusions of the article show that with this principle it was possible to find the direction of gravity in almost all situations, except in a few rare and specific cases such as when the subject was completely immobile.






Drones estimate their attitude with the help of accelerometers. In contrast, flying insects do not have a specific sense for acceleration. How do they estimate the gravity direction? In this video we show drones flying in an insect-like manner – without accelerometers. This video explains the main concepts behind the article “Accommodating unobservability to control flight attitude with optic flow.” Credit: MAVLab TU Delft

During such perfect stationary flights, the impossibility of finding the direction of gravity will destabilize the drone for a moment and therefore put it in motion. This means the drone will regain the direction of gravity at the next instant. So these movements generate slight oscillations, reminiscent of insect flight.

Using this new principle in robotics could meet a major challenge that nature has also faced: How to obtain a fully autonomous system while limiting payload. Future drone prototypes would be lightened by not needing accelerometers, which is very promising for the smallest models of the size of an insect.

Though this theory may explain how flying insects determine gravity, we still need confirmation that they actually use this mechanism. Specific new biological experiments are needed to prove the existence of these neural processes that are difficult to observe in flight. This publication shows how the synergy between robotics and biology can lead to technological advances and new biological research avenues.


Appreciating a flower’s texture, color, and shape leads to better drone landings


More information:
Guido C. H. E. de Croon et al, Accommodating unobservability to control flight attitude with optic flow, Nature (2022). DOI: 10.1038/s41586-022-05182-2

Provided by
Delft University of Technology


Citation:
How drones could determine the direction of gravity without accelerometers (2022, October 20)
retrieved 21 October 2022
from https://techxplore.com/news/2022-10-drones-gravity-accelerometers.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Previous Post

Clearpath Robotics launches outdoor autonomy software

Next Post

A new type of material called a mechanical neural network can learn and change its physical properties to create adaptable, strong structures

Next Post

A new type of material called a mechanical neural network can learn and change its physical properties to create adaptable, strong structures

Recommended

CES 2023 robotics Innovation Award winners announced

2 months ago

Activ Surgical completes first case with ActivSight

4 weeks ago

10 industries China is focusing on automating

2 days ago

Controlling a Drone After Sudden Rotor Failure #ICRA2022

4 months ago

Lightweight robotic leg prosthesis replicates the biomechanics of the knee, ankle and toe joint

2 months ago

Asensus Surgical wins CE mark for expanded machine learning

1 week ago

Robotics-(-White-)

© 2022 Robotics News Hubb All rights reserved.

Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Privacy Policy and Terms & Conditions.

Navigate Site

  • Home
  • Robotics News
  • Industrial Automation
  • Contact

Newsletter Sign Up.

No Result
View All Result
  • Home
  • Robotics News
  • Industrial Automation
  • Contact

© 2022 Robotics News Hubb All rights reserved.